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Abstract. We propose a time-independent method for finding a correlated ground state of an extended
time-dependent Hartree-Fock theory, known as the time-dependent density matrix theory (TDDM). The
correlated ground state is used to formulate the small amplitude limit of TDDM (STDDM) which is a
version of extended RPA theories with ground-state correlations. To demonstrate the feasibility of the
method, we calculate the ground state of 22O and study the first 2+ state and its two-phonon states using
STDDM.

PACS. 21.10.Re Collective levels – 21.60.Jz Hartree-Fock and random-phase approximations – 27.30.+t
20 ≤ A ≤ 38

1 Introduction

The study of unstable nuclei is a subject of current exper-
imental and theoretical interests. Self-consistent theories
such as the Hartree-Fock-Bogoliubov theory (HFB) and
the quasi-particle random-phase approximation (QRPA),
which have extensively been used for stable nuclei, have
also been applied to unstable nuclei, and the importance
of ground-state correlations has been demonstrated [1–3].
Introducing a pairing field, HFB and QRPA deal with
pairing correlations in the framework of a mean-field the-
ory. In contrast to HFB and QRPA, the time-dependent
density matrix theory (TDDM) [4], which is one of the
extended time-dependent Hartree-Fock theories, deals
with ground-state correlations as genuine two-body cor-
relations. TDDM has been applied to giant resonances in
stable nuclei [5,6] and also to low-lying collective states in
unstable nuclei [7,8]. The small amplitude limit of TDDM
(STDDM) [9], which is a time-independent version of
TDDM, has also been used to calculate low-lying states
in an oxygen isotope [10]. The importance of ground-state
correlations has also been demonstrated by these TDDM
and STDDM calculations. The correlated ground state
used in these nuclear-structure calculations, however,
is an approximate one which is obtained using a time-
dependent method: The initial Hartree-Fock (HF) ground
state is evolved in time using the equations of motion in
TDDM and a time-dependent residual interaction whose
strength gradually approaches its intended value with a
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time constant τ . In the case of a solvable model where
we can take τ quite large, the ground state obtained has
been found practically stationary and close to the exact
one [11]. However, in realistic cases where it is difficult
to take sufficiently large τ , the mixing of excited states,
which causes spurious oscillations of some ground-state
quantities, is unavoidable though it is small [12]. There-
fore, it is anticipated to develop another method for
finding a correlated ground state of the TDDM equations.
In this paper we propose a time-independent approach
based on Newton’s gradient method and demonstrate
its feasibility by calculating the ground state of 22O
for which we have previously performed time-dependent
calculations [7,8]. 22O is one of the neutron-rich nuclei
which attract recent experimental and theoretical inter-
ests, and is quite suitable for our present study: Although
it is an open shell nucleus, the HF assumption which
we use to obtain a starting ground state in the gradient
method, is valid as first-order approximation, and the
omission of the proton degrees of freedom may be allowed
in this explorative study because of the proton shell
closure. The obtained ground state is used to construct
the Hamiltonian matrix of STDDM, and the first 2+

state and its two-phonon states in 22O are calculated.
The paper is organized as follows. In sect. 2 the time-
independent method for obtaining a correlated ground
state is presented. In sect. 3 the formalism of STDDM
is given. The results of numerical calculations for the
ground state, the first 2+ state, and its two-phonon states
are shown in sect. 4 and sect. 5 is devoted to a summary.
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2 Method for finding a correlated ground
state

The ground state |Φ0〉 in TDDM is a stationary solution
of the TDDM equations and should satisfy

F1(αα′) = 〈Φ0|[a+
αaα′ ,H]|Φ0〉 = 0, (1)

F2(α1α2α
′
2α

′
1) = 〈Φ0|[a+

α1
a+

α2
aα′

2
aα′

1
,H]|Φ0〉 = 0, (2)

where H is the total Hamiltonian consisting of the kinetic-
energy term and a two-body interaction, and [ ] stands
for the commutation relation. F1 and F2 are written in
terms of the occupation matrix n0

αα′ = 〈Φ0|a+
α′aα|Φ0〉

and the two-body correlation matrix C0
α1α2α′

1α′
2

=
〈Φ0|a+

α′
1
a+

α′
2
aα2aα1 |Φ0〉−A(n0

α1α′
1
n0

α2α′
2
), whereA is the an-

tisymmetrization operator. Equations (1) and (2) are de-
rived from the TDDM equations under the condtion that
n0

αα′ and C0
α1α2α′

1α′
2
are time independent. The expres-

sions for F1 and F2 have already been given in ref. [9] but
are shown again in appendix A. The single-particle wave
function ψα is chosen to be an eigenstate of the mean-field
Hamiltonian h0(ρ0):

h0(ρ0)ψα(1) = −�
2∇2

2m
ψα(1) +

∫
d2v(1, 2)

×[ρ0(2, 2)ψα(1)− ρ0(1, 2)ψα(2)] = εαψα(1), (3)

where the numbers denote space, spin, and isospin coor-
dinates, and the one-body density matrix ρ0 is given as

ρ0(11′) =
∑
αα′

n0
αα′ψα(1)ψ∗

α′(1′). (4)

Attempts have been made to find a solution of eqs. (1)
and (2) [13]. However, this is not evident partly because
eqs. (1) and (2) are not in the form of an eigenvalue prob-
lem. The time-dependent method has been developed and
tested for a solvable model [11] and realistic nuclei [7,8,12]
as mentioned above. In the following we propose a time-
independent approach using the iterative Newton’s gra-
dient method. We start from the HF ground state where
n0

αα′ = δαα′ (0) for occupied (unoccupied) single-particle
states and C0

α1α2α′
1α′

2
= 0. Then we iterate(

n0(N + 1)
C0(N + 1)

)
=

(
n0(N)
C0(N)

)

−α
(
δF1/δn

0 δF1/δC
0

δF2/δn
0 δF2/δC

0

)−1(
F1(N)
F2(N)

)

=
(
n0(N)
C0(N)

)
− α

(
a c
b d

)−1 (
F1(N)
F2(N)

)
(5)

until convergence is achieved, where the matrix elements
a, b, c, and d, which also depend on the iteration step N ,
are equivalent to those appearing in the Hamiltonian ma-
trix of STDDM. They are given in ref. [10] and also shown
in appendix B. We have to introduce a small parameter
α to control the convergence process. We have tested this
iterative method for a solvable model [14] and found that
the obtained result is equivalent to the solution which had
been obtained using the time-dependent approach [11].

3 Small amplitude limit of TDDM

TDDM gives the time evolution of the one-body density
matrix ρ and the correlated part C2 of a two-body den-
sity matrix [4,15], and STDDM has been formulated by
linearizing the equations of motion for ρ and C2 [9]. The
equations of STDDM for the one-body amplitude xαα′(µ)
and the two-body amplitude Xα1α2α′

1α′
2
(µ) can be written

in matrix form [10]:

(
a c
b d

)(
x
X

)
= ωµ

(
x
X

)
. (6)

Equation (6) can also be obtained from the following equa-
tions:

〈Φ0|[a+
α′aα,H]|Φ〉 = ωµ〈Φ0|a+

α′aα|Φ〉, (7)

〈Φ0|[a+
α′

1
a+

α′
2
aα2aα1 ,H]|Φ〉 = ωµ〈Φ0|a+

α′
1
a+

α′
2
aα2aα1 |Φ〉, (8)

where |Φ〉 is the wave function for an excited state
with excitation energy ωµ. Linearizing eqs. (7) and (8)
with respect to xαα′ = 〈Φ0|a+

α′aα|Φ〉 and Xα1α2α′
1α′

2
=

〈Φ0|a+
α′

1
a+

α′
2
aα2aα1 |Φ〉, and using n0

αα′ = 〈Φ0|a+
α′aα|Φ0〉

and C0
α1α2α′

1α′
2
= 〈Φ0|a+

α′
1
a+

α′
2
aα2aα1 |Φ0〉−A(n0

α1α′
1
n0

α2α′
2
),

we can obtain eq. (6). The fact that the linearization of
eqs. (7) and (8) gives eq. (6) might explain why the ma-
trices a, b, c, and d are given by the variation of F1 and
F2. The Hamiltonian matrix of eq. (6) is not Hermitian as
easily understood from its explicit form (see appendix B).
In the case of a non-Hermitian Hamiltonian matrix, the
ortho-normal and completeness relations are given not by
the Hermitian conjugate of |µ〉 = (x, X) but by the left-
hand–side eigenvectors |µ̃〉 = (x̃, X̃) which satisfy

(x̃∗, X̃∗)
(
a c
b d

)
= ωµ(x̃∗, X̃∗), (9)

as explained in ref. [10]. When the ground state |Φ0〉 is as-
sumed to be the HF one and only the particle (p)-hole (h)
and 2p-2h amplitudes (and their complex conjugates) are
taken in eq. (6), STDDM reduces to the second RPA
(SRPA) [16–18].

The strength function is defined as

S(E) =
∑

Eµ>0

|〈Ψµ|Q̂|Ψ0〉|2δ(E − Eµ), (10)

where |Ψ0〉 is the ground state, |Ψµ〉 is an excited state with
an excitation energy Eµ, and Q̂ an excitation operator.
The strength function in STDDM for a one-body operator
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Q̂1 is given as [10]

S(E) = − 1
π
Im

{ ∑
Re(ωµ)>0

[(∑
αα′

〈α|Q1|α′〉xα′α(µ)

)

×

∑

ββ′
〈β|Q1|β′〉x̃t

β′β(µ)




∗
1

E − ωµ + iΓ/2

−
(∑

αα′
〈α|Q1|α′〉xα′α(µ)

)∗

×

∑

ββ′
〈β|Q1|β′〉x̃t

β′β(µ)


 1

E + ω∗
µ + iΓ/2

]}
,

(11)

where an artificial width Γ is put to obtain a smooth dis-
tribution for S(E) and x̃t

αα′(µ) is defined as

x̃t
αα′(µ) =

∑
λλ′

S11(αα′ : λλ′)x̃λλ′(µ)

+
∑

λ1λ2λ′
1λ′

2

T12(αα′ : λ1λ2λ
′
1λ

′
2)X̃λ1λ2λ′

1λ′
2
(µ). (12)

Here S11 and T12 are defined as

S11(αα′ : λλ′) = 〈Φ0|[a+
α′aα, a

+
λ aλ′ ]|Φ0〉, (13)

T12(αα′ : λ1λ2λ
′
1λ

′
2) = 〈Φ0|[a+

α′aα, : a+
λ1
a+

λ2
aλ′

2
aλ′

1
:]|Φ0〉,

(14)

where : : means that : a+
λ1
a+

λ2
aλ′

2
aλ′

1
:= a+

λ1
a+

λ2
aλ′

2
aλ′

1
−

A(a+
λ1
aλ′

1
〈Φ0|a+

λ2
aλ′

2
|Φ0〉 + a+

λ2
aλ′

2
〈Φ0|a+

λ1
aλ′

1
|Φ0〉). Simi-

larly, the strength function in STDDM for a two-body
excitation operator Q̂2 is given as

S(E) = − 1
π
Im

{ ∑
Re(ωµ)>0[ 

 ∑
α1α2α′

1α′
2

〈α1α2|Q2|α′
1α

′
2〉Xα′

1α′
2α1α2(µ)




×

 ∑

β1β2β′
1β′

2

〈β1β2|Q2|β′
1β

′
2〉X̃t

β′
1β′

2β1β2
(µ)




∗

× 1
E − ωµ + iΓ/2

−

 ∑

α1α2α′
1α′

2

〈α1α2|Q2|α′
1α

′
2〉Xα′

1α′
2α1α2(µ)




∗

×

 ∑

β1β2β′
1β′

2

〈β1β2|Q2|β′
1β

′
2〉X̃t

β′
1β′

2β1β2
(µ)




× 1
E + ω∗

µ + iΓ/2

]}
, (15)

where X̃t
α1α2α1α′

2
(µ) is given by

X̃t
α1α2α1α′

2
(µ) =

∑
λλ′

T21(α1α2α
′
1α

′
2 : λλ′)x̃λλ′(µ)

+
∑

λ1λ2λ′
1λ′

2

S22(α1α2α
′
1α

′
2 : λ1λ2λ

′
1λ

′
2)X̃λ1λ2λ′

1λ′
2
(µ).

(16)

Here T21 and S22 are defined as

T21(α1α2α
′
1α

′
2 : λλ′) =

〈Φ0|[: a+
α′

1
a+

α′
2
aα2aα1 :, a+

λ aλ′ ]|Φ0〉 , (17)

S22(α1α2α
′
1α

′
2 : λ1λ2λ

′
1λ

′
2) =

〈Φ0|[: a+
α′

1
a+

α′
2
aα2aα1 :, : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Φ0〉. (18)

S11, S22, T12 and T21 are written in terms of n0
αα′ and

C0
αβα′β′ , and are given explicitly in ref. [19]. The strength

functions in STDDM are not guaranteed to be positive
definite, as is easily understood from eqs. (11) and (15).
In practical applications this has not caused problems.

4 Numerical solutions

4.1 Correlated ground state

In this subsection we present how the correlated ground
state of 22O is calculated and discuss some properties of
the obtained ground state. To prepare the starting ground
state for eq. (5), we perform a static HF calculation as
the first step. The Skyrme III (SKIII) is used as the ef-
fective interaction to generate a mean field. It has often
been used as one of the standard parameterizations of
the Skyrme force in nuclear-structure calculations even
for very neutron-rich nuclei [1,20]. We assume in the HF
calculation that 1d5/2 is the last fully occupied neutron or-
bit of 22O. Since eq. (5) involves matrix inversion at each
iteration step, it is difficult to use a large number of single-
particle states to solve eq. (5). In this explorative study we
only use the two neutron orbits, 1d5/2 and 2s1/2, to evolve
n0

αα′ and C0
αβα′β′ . Configurations consisting of these two

orbits are considered to be the major components of the
correlated ground state and the first 2+ state. The single-
particle wave functions are confined to a sphere with ra-
dius 12 fm. The mesh size used is 0.1 fm. At each iteration
step of eq. (5), eq. (3) is solved. This means that the single-
particle states also evolve in a consistent way. In a fully
self-consistent calculation the residual interaction which is
used to solve eq. (5) (and also eq. (6)) should be the same
as that used to generate the mean field. However, we had
found in previous studies for giant resonances [21] that
SKIII induces negligible ground-state correlations when
the single-particle space is significantly truncated. This is
the case also in this study of 22O as will be shown be-
low. Therefore, we present the results using the following
pairing-type residual interaction of the density-dependent
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Fig. 1. Sum of the absolute values of the matrix elements of
F1 and F2 as a function of the number of iterations. Each spike
corresponds to an increase of the interaction strength by v0/20
(see text).

δ-function form [22] which is known to induce significant
ground-state correlations [8]

v(r − r′) = v0(1− ρ(r)/ρ0)δ3(r − r′), (19)

where ρ(r) is the nuclear density. The parameters ρ0 and
v0 are set to be 0.16 fm−3 and −900 MeV fm3, respec-
tively. Similar values of ρ0 and v0 have been used in HFB
calculations [23–25] in truncated single-particle space. The
converged result somewhat depends on how the iteration
process is chosen. We found that to achieve real conver-
gence it is necessary to start with a small value of v0 and
gradually increase it: In the calculation shown below we
start with v0/20 and increase it by v0/20 for each 100
iterations. The sum of the absolute values of the matrix
elements of F1 and F2 is shown in fig. 1 as a function of
the number of iterations. The final value of

∑
(|F1|+ |F2|)

at the 2100th step is 2.5 × 10−5 MeV. Figure 1 demon-
strates that the iteration method eq. (5) works quite well.
The final single-particle energies of the 1d5/2 and 2s1/2

are −6.9 MeV and −2.8 MeV, respectively. Their occu-
pation probabilities are 0.98 and 0.05, respectively. The
correlation energy Ecor defined as

Ecor =
1
2

∑
αβα′β′

〈αβ|v|α′β′〉C0
α′β′αβ (20)

is −0.60 MeV. The total energy is decreased by 0.22 MeV
from the HF value: The correlation energy is largely com-
pensated by the increase of the HF energy.

4.2 Low-lying 2+ states

Using the correlated ground state shown above, we solve
eq. (6) and calculate the strength function for 2+ states ac-
cording to eq. (11). To be consistent with the calculation of
n0

αα′ and C0
αβα′β′ , we only use the neutron 1d5/2 and 2s1/2

orbits for xαα′ and Xαβα′β′ . The eigenvalues of some 2+

Fig. 2. Strength distributions of the neutron quadrupole
modes in 22O calculated in STDDM (solid line), SRPA (thin
dotted line) and RPA (dot-dashed line). The strength functions
are smoothed with Γ = 0.5 MeV.

states become imaginary because the Hamiltonian matrix
of eq. (6) is not Hermitian. However, their imaginary parts
are quite small (less than 0.05 MeV). Some 2+ states have
also negative quadrupole strengths because the positivity
of S(E) is not guaranteed. However, the negative contribu-
tions are so small that S(E) becomes positive in the entire
energy region when it is smoothed with Γ = 0.5 MeV.
The obtained result for Q1 = r2Y20 in STDDM (solid
line) is shown in fig. 2, where the strength functions in
RPA (dot-dashed line) and SRPA (thin dotted line) are
also presented for comparison. The 2+ state calculated in
STDDM is energetically shifted upward and becomes sig-
nificantly more collective as compared with that in RPA.
The increase in the excitation energy is due to the lowering
of the ground state, which is realized by the increase in the
unperturbed p-h energy through the coupling to C0

α′β′αβ .
We will discuss this point in more detail below. The en-
hancement of the collectivity of the 2+ state is due to the
mixing of two-body configurations. These properties of the
first 2+ state under the influence of ground-state correla-
tions are similar to those obtained from QRPA calcula-
tions [2,3]. The reduced transition probability obtained
is 68 fm4. If the neutron effective charge is assumed to
be 0.5e, the value of B(E2 : 0+ → 2+

1 ) becomes 17 e2fm4,
which might be comparable with the experimental value of
21± 8 e2fm4 [26]. The 2+ state in SRPA is simply shifted
downwards due to the coupling to 2p-2h configurations
located around 8 MeV.

4.3 Two-phonon states

The strength functions for the two-body operators Q2 =
[r2Y2 ⊗ r2Y2]J0 with J = 0, 2, and 4 are also calcu-
lated using eq. (15) and the obtained results are shown in
fig. 3. The transition strength decreases with increasing
J , whereas it would be independent of J if a pure-phonon
picture were valid. The ratios of the transition strengths
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Fig. 3. Strength distributions of the two-phonon states of the
neutron quadrupole modes in 22O calculated in STDDM. The
solid, dotted and dot-dashed lines depict the results for the
0+, 2+ and 4+ states, respectively. The strength functions are
smoothed with Γ = 0.5 MeV.

of the 2+ and 4+ states to that of the 0+ state are 0.55 and
0.30, respectively. These ratios should be compared with
4/5 and 1/3, respectively, which are obtained assuming
unperturbed two 2s1/2 particle-two 1d5/2 hole configura-
tions. Although the excitation energies of the 2+and 4+

states are about twice the excitation of the 1-phonon state,
the 0+ state is located at quite low energy. This originates
in the nature of the residual interaction of the δ-function
form (eq. (19)) which strongly favors a nucleon pair with
Jπ = 0+. The large spacing between the 0+ state and the
2+ state is similar to that obtained from the shell model
calculation [27]. The strength distribution of the 2+ state
has some small components in the low-energy region (be-
low 5 MeV). This problem will be discussed in the next
subsection. The transition probability between the one-
phonon state and one of the two-phonon states is not well
defined in STDDM but may be calculated as [28]

〈Φ0|[Oµ, Q̂1]|µ′〉〈Φ0|[Oµ′ , Q̂1]|µ〉
〈µ̃|µ〉〈µ̃′|µ′〉 , (21)

where Oµ is defined as

Oµ =
∑

(x̃∗λλ′(µ)a+
λ′aλ + X̃∗

λ1λ2λ′
1λ′

2
(µ)a+

λ′
1
a+

λ′
2
aλ2aλ1).

(22)
The reduced transition probabilities from the 0+, 2+, and
4+ states to the 1-phonon state are 16, 14, and 12 fm4,
respectively, which are close to the value 68/5 ≈ 14 fm4 for
the transition from the first 2+ state to the ground state.
If a pure-phonon picture were valid, these values would
be independent of the angular momenta of the 2-phonon
states.

In the following we compare STDDM with SRPA. The
strength functions calculated in SRPA are shown in fig. 4.
The transition strengths in SRPA are much smaller than
those in STDDM. Note that fig. 4 is drawn in the same
scale as fig. 3. It had been pointed out [28] that the Xphph

Fig. 4. Strength distributions of the two-phonon states of the
neutron quadrupole mode in 22O calculated in SRPA. The
solid, dotted and dot-dashed lines depict the results for the
0+, 2+ and 4+ states, respectively. The strength functions are
smoothed with Γ = 0.5 MeV.

Fig. 5. Strength distributions of the 0+ two-phonon state of
the neutron quadrupole modes in 22O calculated in STDDM
(solid line), SRPA (dot-dashed line) and mSRPA (dotted line)
which includes Xphph-type amplitudes. The thin solid line indi-
cates the result calculated using further modified SRPA where
the Xpppp- and Xhhhh-type amplitudes are added to mSRPA.
The strength functions are smoothed with Γ = 0.5 MeV.

amplitude is important to reproduce the collectivity of
low-lying two phonon states. To investigate this point, we
performed a calculation for the 0+ state using a modi-
fied SRPA (mSRPA) which includes Xphph: mSRPA can
be obtained from eq. (6) by evaluating the Hamiltonian
matrix using the HF ground state. The result is shown in
fig. 5. The Xphph amplitude significantly enhances the col-
lectivity of the 0+ state. However, the transition strength
in mSRPA is still smaller than that in STDDM. In fig. 5
we also show the result of a further modified SRPA which
includes all two-body amplitudes except for the 3p-1h, 1h-
3p, 3h-1p and 1p-3h amplitudes. The 3p-1h and 3h-1p am-
plitudes do not increase the transition strength, although
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Fig. 6. Strength distributions of the two-phonon states of the
neutron quadrupole modes in 22O calculated in STDDM using
SKIII. The solid, dotted and dot-dashed lines depict the results
for the 0+, 2+ and 4+ states, respectively. The result in SRPA
for the 0+ state is also shown with the thin solid line. The
strength functions are smoothed with Γ = 0.5 MeV.

they change somewhat the form of the strength function.
Now the transition strength becomes 91% of the strength
in STDDM. Thus, all two-body amplitudes except for the
3p-1h and 3h-1p types seem to be important to describe
the collectivity of the low-lying 2-phonon states. This is in
contrast to two-phonon states of giant resonances where
the transition strengths are exhausted by the 2p-2h, 2h-2p
and 1p1h-1p1h amplitudes [29]. The fact that the 0+ state
in STDDM is not much lowered as compared with the
modified SRPA results is due to ground-state correlations.

We also performed a self-consistent STDDM calcu-
lation using SKIII as a residual interaction. For sim-
plicity, we neglected the spin-orbit force. Since there is
a strong cancellation between the momentum-dependent
and -independent terms, SKIII induces quite weak ground-
state correlations in the truncated single-particle space
considered in this work: The occupation probabilities of
the 1d5/2 and 2s1/2 are 0.9999 and 0.0003, respectively.
The strength functions for the two-phonon states are
shown in fig. 6. The ratios of the g.s. → 2+ and 4+ transi-
tion strengths to the g.s. → 0+ one are 0.77 and 0.33, re-
spectively, which are close to 4/5 and 1/3 obtained assum-
ing the unperturbed configurations as discussed above.
Since SKIII is effectively a very weak interaction in the
truncated single-particle space, there is no significant dif-
ference between the STDDM and SRPA results.

4.4 Incoherent states

Now we discuss incoherent states which are seen in the
low-energy region of the strength function of the 2-phonon
state with Jπ = 2+ (fig. 3). These incoherent states have
large components of the 3p-1h and 1p-3h configurations
which have the same unperturbed energy as the 1p-1h con-
figurations. Since the 3p-1h, 3h-1p amplitudes and their

Fig. 7. Strength distributions of the neutron quadrupole mode
calculated in STDDM (solid line) and mSTDDM (thin dotted
line). The result in RPA (dot-dashed line) is also shown for
comparison. The strength functions are smoothed with Γ =
0.5 MeV.

complex conjugates are used as dynamical amplitudes in
eq. (6), these incoherent states naturally appear as eigen-
states. However, the important physical role played by
these amplitudes seems to be a rather kinematical one.
To clarify this point, we use a different expression for
eq. (6) [10]. When the eigenvector (x,X) in STDDM is
transformed to (y, Y ) as

(
x
X

)
=

(
S11 T12

T21 S22

) (
y
Y

)
, (23)

eq. (6) becomes

(
aS11 + cT21 aT12 + cS22

bS11 + dT21 bT12 + dS22

)(
y
Y

)
= ωµ

(
S11 T12

T21 S22

)(
y
Y

)
.

(24)
It has been pointed out [10] that this form of STDDM
is a reasonable approximation for an extended RPA with
Hermiticity [19]. The kinematical effects of ground-state
correlations are included in the Hamiltonian matrix of
eq. (24). For example, the increase of the unperturbed en-
ergy of 1-phonon states due to ground-state correlations
is given by cT21 in aS11 + cT21, whereas aS11 describes
the renormalization of the RPA matrix due to the change
in occupation factors. Omitting the 3p-1h and 3h-1p am-
plitudes and their complex conjugates in Y , we can avoid
dynamical contributions of these amplitudes. This mod-
ified STDDM is referred to as mSTDDM. The obtained
results for the 1-phonon state and the 2-phonon state with
Jπ = 2+ are shown with thin dotted lines in figs. 7 and
8, respectively. The coherent states are little affected by
the omission of the 3p-1h and 3h-1p amplitudes and their
complex conjugates, and the incoherent states seen in the
2-phonon state can be eliminated. Thus it would be bet-
ter to use eq. (24) without the 3p-1h– and 3h-1p–type
amplitudes instead of using eq. (6) with full two-body am-
plitudes when we are interested in the calculation of the
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Fig. 8. Strength distributions of the 2+ two-phonon state cal-
culated in STDDM (solid line) and mSTDDM (thin dotted
line). The strength functions are smoothed with Γ = 0.5 MeV.

strength functions. However, we also found that the omis-
sion of the the 3p-1h– and 3h-1p–type amplitudes affects
the transition probability between excited states when it
is evaluated using eq. (21).

Finally we discuss incoherent states associated with
one-body and two-body amplitudes which have zero un-
perturbed energy: xpp, xhh, Xphph, Xpppp, and Xhhhh are
such amplitudes. Some incoherent solutions of eq. (6) or
eq. (24) have finite energies but most of them stay at
zero or nearly zero energies. The transition strengths to
these states are so small that they are invisible in the
strength functions shown above. If these amplitudes are
neglected and only xph, xhp, Xpphh, and Xhhpp are taken
in eq. (24), these incoherent states disappear. However,
a serious problem arises as to the collectivity of coherent
states, especially of 2-phonon states, as explained above.
Therefore, what we must do would be to interpret these
incoherent states as unphysical ones and consider only co-
herent states.

4.5 Effects of three-body amplitudes

The Hamiltonian matrix bT12+dS22 for the two-body am-
plitudes in eq. (24) cannot represent all terms in the ex-
tended RPA of ref. [19]. The terms coming from

∑
γ1γ2γ3γ′

1γ′
2γ′

3

e(α1α2α
′
1α

′
2 : γ1γ2γ3γ

′
1γ

′
2γ

′
3)

×T32(γ1γ2γ3γ
′
1γ

′
2γ

′
3 : λ1λ2λ

′
1λ

′
2) (25)

are the missing terms. Here e is a matrix that would come
into the Hamiltonian matrix if we included a three-body
amplitude in the evaluation of the left-hand side of eq. (8),

Fig. 9. Strength distributions of the 0+ two-phonon state cal-
culated in mSTDDM with eq. (25) (solid line) and without
it (dotted line). The strength functions are smoothed with
Γ = 0.5 MeV.

and is given as

e(α1α2α
′
1α

′
2 : γ1γ2γ3γ

′
1γ

′
2γ

′
3) =

−〈α1γ
′
3|v|γ1γ2〉δα2γ3δα′

1γ′
1
δα′

2γ′
2

+〈α2γ
′
3|v|γ1γ2〉δα1γ3δα′

1γ′
1
δα′

2γ′
2

+〈γ′1γ′2|v|α′
1γ3〉δα1γ1δα2γ2δα′

2γ′
3

−〈γ′1γ′2|v|α′
2γ3〉δα1γ1δα2γ2δα′

1γ′
3
. (26)

T32 is defined as

T32(γ1γ2γ3γ
′
1γ

′
2γ

′
3 : λ1λ2λ

′
1λ

′
2) =

〈Φ0|[: a+
γ′
1
a+

γ′
2
a+

γ′
3
aγ3aγ2aγ1 :, : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Φ0〉.

(27)

This eT32 term contributes to the two-body sector of the
Hamiltonian matrix in eq. (24) when the transformation of
eq. (23) includes the three-body amplitudes. Kinematical
effects of ground-state correlations such as the increase
in unperturbed energies of 2-phonon states are expressed
by some terms in eq. (25). We performed a calculation in
mSTDDM including eq. (25) and found that the 1-phonon
state is little affected: The excitation energy of the first
2+ state is unchanged and the transition strength to the
first 2+ state is slightly increased (by 2.5%). The inclusion
of the terms in eq. (25) somewhat affects the properties of
the 2-phonon states as expected: The excitation energies
are increased by 0.2–0.5 MeV and the transition strengths
are decreased by 8–20%, depending on J of the 2-phonon
states. As an example the strength functions for the 0+

state calculated in mSTDDM with the terms in eq. (25)
(solid line) and without them (dotted line) are shown in
fig. 9. Thus the terms in eq. (25) need to be included in
quantitative study of 2-phonon states.
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5 Summary

We proposed a time-independent method for obtaining
a correlated ground-state of the time-dependent density
matrix theory (TDDM). The method was applied to ob-
tain the correlated ground state of 22O. The eigenstates of
the small amplitude limit of TDDM (STDDM) were cal-
culated for the first 2+ state in 22O using the correlated
ground state. It is found that STDDM properly deals with
the effects of ground-state correlations on the low-lying 2+

state and that the non-Hermiticity of STDDM is a quite
moderate one: The eigenvalues have quite small imaginary
parts and the strength function is practically positive def-
inite although it is not guaranteed in its non-Hermitian
form. The 2-phonon states of the 2+ state were also stud-
ied. It was found that the 2-phonon state with Jπ = 0+

appears at very low excitation energy. This originates in
the nature of the zero-range force used. The results ob-
tained using the Skyrme III force as a residual interac-
tion were also presented. It was found that SKIII acts as
a weak residual interaction in the very truncated single-
particle space considered in this study. The physical roles
played by the 3 particle-1 hole and 3 hole-1 particle type
amplitudes in STDDM were discussed and a method for
eliminating the incoherent states associated with these
amplitudes was presented. It was also pointed out that
the self-energy terms for unperturbed 2-phonon configu-
rations, which are missing in STDDM, can be included
using the extended RPA formalism of refs. [10,19].

Appendix A.

When ψα is chosen to be an eigenstate of the mean-field
Hamiltonian (eq. (3)), F1 and F2 become

F1(α′α) = (εα − εα′)n0
αα′

+
∑

λ1λ2λ3

(C0
λ1λ2α′λ3

〈αλ3|v|λ1λ2〉

−C0
αλ3λ1λ2

〈λ1λ2|v|α′λ3〉) , (A.1)

F2(α′β′αβ) = (εα + εβ − εα′ − εβ′)C0
αβα′β′

+B0
αβα′β′ + P 0

αβα′β′ +H0
αβα′β′ , (A.2)

where

B0
αβα′β′ =

∑
λ1λ2λ3λ4

〈λ1λ2|v|λ3λ4〉A

×[(δαλ1 − n0
αλ1

)(δβλ2 − n0
βλ2

)n0
λ3α′n0

λ4β′

−n0
αλ1

n0
βλ2

(δλ3α′ − n0
λ3α′)(δλ4β′ − n0

λ4β′)], (A.3)

P 0
αβα′β′ =

∑
λ1λ2λ3λ4

〈λ1λ2|v|λ3λ4〉

×[(δαλ1δβλ2 − δαλ1n
0
βλ2

− n0
αλ1

δβλ2)C
0
λ3λ4α′β′

−(δλ3α′δλ4β′ − δλ3α′n0
λ4β′ − n0

λ3α′δλ4β′)C0
αβλ1λ2

],

(A.4)

H0
αβα′β′ =

∑
λ1λ2λ3λ4

〈λ1λ2|v|λ3λ4〉A

×[δαλ1(n
0
λ3α′C0

λ4βλ2β′ − n0
λ3β′C0

λ4βλ2α′)

+δβλ2(n
0
λ4β′C0

λ3αλ1α′ − n0
λ4α′C0

λ3αλ1β′)

−δα′λ3(n
0
αλ1

C0
λ4βλ2β′ − n0

βλ1
C0

λ4αλ2β′)

−δβ′λ4(n
0
βλ2

C0
λ3αλ1α′ − n0

αλ2
C0

λ3βλ1α′)]. (A.5)

Here the subscript A indicates that the corresponding ma-
trix is antisymmetrized.

Appendix B.

The matrices in eq. (6) are shown below:

a(αα′ : λλ′) = (εα − εα′)δαλδα′λ′

−
∑

β

(〈βλ′|v|α′λ〉An0
αβ − 〈αλ′|v|βλ〉An0

βα′), (B.1)

b(α1α2α
′
1α

′
2 : λλ′) = −δα1λ

{ ∑
βγδ

[(δα2β−n0
α2β)n

0
γα′

1
n0

δα′
2

+n0
α2β(δγα′

1
− n0

γα′
1
)(δδα′

2
− n0

δα′
2
)〈λ′β|v|γδ〉A]

+
∑
βγ

[〈λ′α2|v|βγ〉C0
βγα′

1α′
2
+ 〈λ′β|v|α′

1γ〉AC0
α2γα′

2β

−〈λ′β|v|α′
2γ〉AC0

α2γα′
1β ]

}

+δα2λ

{ ∑
βγδ

[(δα1β − n0
α1β)n

0
γα′

1
n0

δα′
2

+n0
α1β(δγα′

1
− n0

γα′
1
)(δδα′

2
− n0

δα′
2
)〈λ′β|v|γδ〉A]

+
∑
βγ

[〈λ′α1|v|βγ〉C0
βγα′

1α′
2
+ 〈λ′β|v|α′

1γ〉AC0
α1γα′

2β

−〈λ′β|v|α′
2γ〉AC0

α1γα′
1β ]

}

+δα′
1λ′

{ ∑
βγδ

[(δδα′
2
− n0

δα′
2
)n0

α1βn
0
α2γ

+n0
δα′

2
(δα1β − n0

α1β)(δα2γ − n0
α2γ)〈βγ|v|λδ〉A]

+
∑
βγ

[〈βγ|v|λα′
2〉C0

α1α2βγ + 〈α1β|v|λγ〉AC0
α2γα′

2β

−〈α2β|v|λγ〉AC0
α1γα′

2β ]
}

−δα′
2λ′

{ ∑
βγδ

[(δδα′
1
− n0

δα′
1
)n0

α1βn
0
α2γ

+n0
δα′

1
(δα1β − n0

α1β)(δα2γ − n0
α2γ)〈βγ|v|λδ〉A]

+
∑
βγ

[〈βγ|v|λα′
1〉C0

α1α2βγ + 〈α1β|v|λγ〉AC0
α2γα′

1β



M. Tohyama et al.: Extended RPA with ground-state correlations 225

−〈α2β|v|λγ〉AC0
α1γα′

1β ]
}

+
∑

β

[〈α1λ
′|v|βλ〉AC0

βα2α′
1α′

2
− 〈α2λ

′|v|βλ〉AC0
βα1α′

1α′
2

−〈βλ′|v|α′
2λ〉AC0

α1α2α′
1β + 〈βλ′|v|α′

1λ〉AC0
α1α2α′

2β ],

(B.2)
c(αα′ : λ1λ2λ

′
1λ

′
2) = 〈αλ′

2|v|λ1λ2〉δα′λ′
1

−〈λ′
1λ

′
2|v|α′λ2〉δαλ1 , (B.3)

d(α1α2α
′
1α

′
2 : λ1λ2λ

′
1λ

′
2) = (εα1 + εα2 − εα′

1
− εα′

2
)

×δα1λ1δα2λ2δα′
1λ′

1
δα′

2λ′
2

+δα′
1λ′

1
δα′

2λ′
2

∑
βγ

(δα1βδα2γ − δα2γn
0
α1β

−δα1βn
0
α2γ)〈βγ|v|λ1λ2〉

−δα1λ1δα2λ2

∑
βγ

(δα′
1βδα′

2γ − δα′
2γn

0
α′

1β

−δα′
1βn

0
α′

2γ)〈λ′
1λ

′
2|v|βγ〉

+δα2λ2δα′
2λ′

2

∑
β

(〈α1λ
′
1|v|βλ1〉An0

βα′
1

−〈βλ′
1|v|α′

1λ1〉An0
α1β)

+δα2λ2δα′
1λ′

1

∑
β

(〈α1λ
′
2|v|βλ1〉An0

βα′
2

−〈βλ′
2|v|α′

2λ1〉An0
α1β)

+δα1λ1δα′
1λ′

1

∑
β

(〈α2λ
′
2|v|βλ2〉An0

βα′
2

−〈βλ′
2|v|α′

2λ2〉An0
α2β)

+δα1λ1δα′
2λ′

2

∑
β

(〈α2λ
′
1|v|βλ2〉An0

βα′
1

−〈βλ′
1|v|α′

1λ2〉An0
α2β), (B.4)

where n0
αα′ = 〈Φ0|a+

α′aα|Φ0〉 and C0
α1α2α′

1α′
2

=
〈Φ0|a+

α′
1
a+

α′
2
aα2aα1 |Φ0〉 − A(n0

α1α′
1
n0

α2α′
2
).
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